lunes, 7 de diciembre de 2009

PROBABILIDAD:INTRODUCCIÓN

LECCION 14ª
Probabilidad: Introducción

La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.

Ejemplo: tiramos un dado al aire y queremos saber cual es la probabilidad de que salga un 2, o que salga un número par, o que salga un número menor que 4.

El experimento tiene que ser aleatorio, es decir, que pueden presentarse diversos resultados, dentro de un conjunto posible de soluciones, y esto aún realizando el experimento en las mismas condiciones. Por lo tanto, a priori no se conoce cual de los resultados se va a presentar:

Ejemplos: lanzamos una moneda al aire: el resultado puede ser cara o cruz, pero no sabemos de antemano cual de ellos va a salir.

En la Lotería de Navidad, el "Gordo" (en España se llama "Gordo" al primer premio) puede ser cualquier número entre el 1 y el 100.000, pero no sabemos a priori cual va a ser (si lo supiéramos no estaríamos aquí escribiendo esta lección).

Hay experimentos que no son aleatorios y por lo tanto no se les puede aplicar las reglas de la probabilidad.

Ejemplo: en lugar de tirar la moneda al aire, directamente selccionamos la cara. Aquí no podemos hablar de probabilidades, sino que ha sido un resultado determinado por uno mismo.

Antes de calcular las probabilidades de un experimento aleaotorio hay que definir una serie de conceptos:

Suceso elemental: hace referencia a cada una de las posibles soluciones que se pueden presentar.

Ejemplo: al lanzar una moneda al aire, los sucesos elementales son la cara y la cruz. Al lanzar un dado, los sucesos elementales son el 1, el 2, .., hasta el 6.

Suceso compuesto: es un subconjunto de sucesos elementales.

Ejemplo: lanzamos un dado y queremos que salga un número par. El suceso "numero par" es un suceso compuesto, integrado por 3 sucesos elementales: el 2, el 4 y el 6

O, por ejemplo, jugamos a la ruleta y queremos que salga "menor o igual que 18". Este es un suceso compuesto formado por 18 sucesos elementales (todos los números que van del 1 al 18).

Al conjunto de todos los posibles sucesos elementales lo denominamos espacio muestral. Cada experimento aleatorio tiene definido su espacio muestral (es decir, un conjunto con todas las soluciones posibles).

Ejemplo: si tiramos una moneda al aíre una sola vez, el espacio muestral será cara o cruz.

Si el experimento consiste en lanzar una moneda al aire dos veces, entonces el espacio muestral estaría formado por (cara-cara), (cara-cruz), (cruz-cara) y (cruz-cruz).

Probabilidad: Relación entre sucesos

15°

Entre los sucesos compuestos se pueden establecer distintas relaciones:

a) Un suceso puede estar contenido en otro: las posibles soluciones del primer suceso también lo son del segundo, pero este segundo suceso tiene además otras soluciones suyas propias.

Ejemplo: lanzamos un dado y analizamos dos sucesos: a) que salga el número 6, y b) que salga un número par. Vemos que el suceso a) está contenido en el suceso b).

Siempre que se da el suceso a) se da el suceso b), pero no al contrario. Por ejemplo, si el resultado fuera el 2, se cumpliría el suceso b), pero no el el a).

b) Dos sucesos pueden ser iguales: esto ocurre cuando siempre que se cumple uno de ellos se cumple obligatoriamente el otro y viceversa.

Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que salga múltiplo de 2. Vemos que las soluciones coinciden en ambos casos.

c) Unión de dos o más sucesos: la unión será otro suceso formado por todos los elementos de los sucesos que se unen.

Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par y b) que el resultado sea mayor que 3. El suceso unión estaría formado por los siguientes resultados: el 2, el 4, el 5 y el 6

d) Intersección de sucesos: es aquel suceso compuesto por los elementos comunes de dos o más sucesos que se intersectan.

Ejemplo: lanzamos un dado al aire, y analizamos dos sucesos: a) que salga número par, y b) que sea mayor que 4. La intersección de estos dos sucesos tiene un sólo elemento, el número 6 (es el único resultado común a ambos sucesos: es mayor que 4 y es número par).

e) Sucesos incompatibles: son aquellos que no se pueden dar al mismo tiempo ya que no tienen elementos comunes (su interesección es el conjunto vacio).

Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga un número menor que 3, y b) que salga el número 6. Es evidente que ambos no se pueden dar al mismo tiempo.

f) Sucesos complementarios: son aquellos que si no se da uno, obligatoriamente se tiene que dar el otro.

Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga un número par, y b) que salga un número impar. Vemos que si no se da el primero se tiene que dar el segundo (y viceversa).

LECCION 16ª
Cálculo de probabilidades

Probabilidad

Como hemos comentado anteriormente, la probabilidad mide la mayor o menor posibilidad de que se dé un determinado resultado (suceso) cuando se realiza un experimento aleatorio.

La probabilidad toma valores entre 0 y 1 (o expresados en tanto por ciento, entre 0% y 100%):

El valor cero corresponde al suceso imposible: lanzamos un dado al aire y la probabilidad de que salga el número 7 es cero (al menos, si es un dado certificado por la OMD, "Organización Mundial de Dados").

El valor uno corresponde al suceso seguro: lanzamos un dado al aire y la probabilidad de que salga cualquier número del 1 al 6 es igual a uno (100%).

El resto de sucesos tendrá probabilidades entre cero y uno: que será tanto mayor cuanto más probable sea que dicho suceso tenga lugar.

¿Cómo se mide la probabilidad?

Uno de los métodos más utilizados es aplicando la Regla de Laplace: define la probabilidad de un suceso como el cociente entre casos favorables y casos posibles.

P(A) = Casos favorables / casos posibles

Veamos algunos ejemplos:

a) Probabilidad de que al lanzar un dado salga el número 2: el caso favorable es tan sólo uno (que salga el dos), mientras que los casos posibles son seis (puede salir cualquier número del uno al seis). Por lo tanto:

P(A) = 1 / 6 = 0,166 (o lo que es lo mismo, 16,6%)

b) Probabilidad de que al lanzar un dado salga un número par: en este caso los casos favorables son tres (que salga el dos, el cuatro o el seis), mientras que los casos posibles siguen siendo seis. Por lo tanto:

P(A) = 3 / 6 = 0,50 (o lo que es lo mismo, 50%)

c) Probabilidad de que al lanzar un dado salga un número menor que 5: en este caso tenemos cuatro casos favorables (que salga el uno, el dos, el tres o el cuatro), frente a los seis casos posibles. Por lo tanto:

P(A) = 4 / 6 = 0,666 (o lo que es lo mismo, 66,6%)

d) Probabilidad de que nos toque el "Gordo" de Navidad: tan sólo un caso favorable, el número que jugamos (¡qué triste...¡), frente a 100.000 casos posibles. Por lo tanto:

P(A) = 1 / 100.000 = 0,00001 (o lo que es lo mismo, 0,001%)

Merece la pena ...... Por cierto, tiene la misma probabilidad el número 45.264, que el número 00001, pero ¿cuál de los dos comprarías?

Para poder aplicar la Regla de Laplace el experimento aleatorio tiene que cumplir dos requisitos:

a) El número de resultados posibles (sucesos) tiene que ser finito. Si hubiera infinitos resultados, al aplicar la regla "casos favorables / casos posibles" el cociente siempre sería cero.

b) Todos los sucesos tienen que tener la misma probabilidad. Si al lanzar un dado, algunas caras tuvieran mayor probabilidad de salir que otras, no podríamos aplicar esta regla.

A la regla de Laplace también se le denomina "probabilidad a priori", ya que para aplicarla hay que conocer antes de realizar el experimento cuales son los posibles resultados y saber que todos tienen las mismas probabilidades.

¿Y si el experimento aleatorio no cumple los dos requisitos indicados, qué hacemos?, ¿ponemos una denuncia?

No, no va a ser necesario denunciar a nadie, ya que en este caso podemos acudir a otro modelo de cálculo de probabilidades que se basa en la experiencia (modelo frecuentista):

Cuando se realiza un experimento aleatorio un número muy elevado de veces, las probabilidades de los diversos posibles sucesos empiezan a converger hacia valores determinados, que son sus respectivas probabilidades.

Ejemplo: si lanzo una vez una moneda al aire y sale "cara", quiere decir que el suceso "cara" ha aparecido el 100% de las veces y el suceso "cruz" el 0%.

Si lanzo diez veces la moneda al aire, es posible que el suceso "cara" salga 7 veces y el suceso "cruz" las 3 restantes. En este caso, la probabilidad del suceso "cara" ya no sería del 100%, sino que se habría reducido al 70%.

Si repito este experimento un número elevado de veces, lo normal es que las probabilidades de los sucesos "cara" y "cruz" se vayan aproximando al 50% cada una. Este 50% será la probabilidad de estos sucesos según el modelo frecuentista.

En este modelo ya no será necesario que el número de soluciones sea finito, ni que todos los sucesos tengan la misma probabilidad.

Ejemplo: si la moneda que utilizamos en el ejemplo anterior fuera defectuosa (o estuviera trucada), es posible que al repetir dicho experimento un número elevado de veces, la "cara" saliera con una frecuencia, por ejemplo, del 65% y la "cruz" del 35%. Estos valores serían las probabilidades de estos dos sucesos según el modelo frecuentista.

A esta definición de la probabilidad se le denomina probabilidad a posteriori, ya que tan sólo repitiendo un experimento un número elevado de veces podremos saber cual es la probabilidad de cada suceso.

LECCION 17ª
Probabilidad de sucesos

Probabilidad de sucesos

Al definir los sucesos hablamos de las diferentes relaciones que pueden guardar dos sucesos entre sí, así como de las posibles relaciones que se pueden establecer entre los mismos. Vamos a ver ahora cómo se refleja esto en el cálculo de probabilidades.

a) Un suceso puede estar contenido en otro: entonces, la probabilidad del primer suceso será menor que la del suceso que lo contiene.

Ejemplo: lanzamos un dado y analizamos dos sucesos: a) que salga el número 6, y b) que salga un número par. Dijimos que el suceso a) está contenido en el suceso b).

P(A) = 1/6 = 0,166

P(B) = 3 / 6 = 0,50

Por lo tanto, podemos ver que la probabilidad del suceso contenido, suceso a), es menor que la probabilidad del suceso que lo contiene, suceso b).

b) Dos sucesos pueden ser iguales: en este caso, las probabilidades de ambos sucesos son las mismas.

Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que salga múltiplo de 2. Las soluciones coinciden en ambos casos.

P(A) = 3 / 6 = 0,50

P(B) = 3 / 6 = 0,50

c) Intersección de sucesos: es aquel suceso compuesto por los elementos comunes de los dos o más sucesos que se intersectan. La probabilidad será igual a la probabilidad de los elemntos comunes.

Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que sea mayor que 3. La intersección de estos dos sucesos tiene dos elementos: el 4 y el 6.

Su probabilidad será por tanto:

P(A L B) = 2 / 6 = 0,33

d) Unión de dos o más sucesos: la probabilidad de la unión de dos sucesos es igual a la suma de las probabilidades individuales de los dos sucesos que se unen, menos la probabilidad del suceso intersección

Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que el resultado sea mayor que 3. El suceso unión estaría formado por los siguientes resultados: el 2, el 4, el 5 y el 6.

P(A) = 3 / 6 = 0,50

P(B) = 3 / 6 = 0,50

P (A L B) = 2 / 6 = 0,33

Por lo tanto,

P (A u B) = (0,50 + 0,50) - 0,33 = 0,666

e) Sucesos incompatibles: la probabilidad de la unión de dos sucesos incompatibles será igual a la suma de las probabilidades de cada uno de los sucesos (ya que su intersección es el conjunto vacio y por lo tanto no hay que restarle nada).

Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga un número menor que 3, y b) que salga el número 6.

La probabilidad del suceso unión de estos dos sucesos será igual a:

P(A) = 2 / 6 = 0,333

P(B) = 1 / 6 = 0,166

Por lo tanto,

P(A u B) = 0,33 + 0,166 = 0,50

f) Sucesos complementarios: la probabilidad de un suceso complementario a un suceso (A) es igual a 1 - P(A)

Ejemplo: lanzamos un dado al aire. el suceso (A) es que salga un número par, luego su complementario, suceso (B), es que salga un número impar.

La probabilidad del suceso (A) es igual a :

P(A) = 3 / 6 = 0,50

Luego, la probabilidad del suceso (B) es igual a:

P(B) = 1 - P(A) = 1 - 0,50 = 0,50

Se puede comprobar aplicando la regla de "casos favorables / casos posibles":

P(B) = 3 / 6 = 0,50

g) Unión de sucesos complementarios: la probabilidad de la unión de dos sucesos complementarios es igual a 1.

Ejemplo: seguimos con el ejemplo anterior: a) que salga un número par, y b) que salga un número impar. La probabilidad del suceso unión de estos dos sucesos será igual a:

P(A) = 3 / 6 = 0,50

P(B) = 3 / 6 = 0,50

Por lo tanto,

P(A U B) = 0,50 + 0,50 = 1

LECCION 18ª
Combinaciones, Variaciones y Permutaciones (I)

Para aplicar la Regla de Laplace, el cálculo de los sucesos favorables y de los sucesos posibles a veces no plantea ningún problema, ya que son un número reducido y se pueden calcular con facilidad:

Por ejemplo: Probabilidad de que al lanzar un dado salga el número 2. Tan sólo hay un caso favorable, mientras que los casos posibles son seis.

Probabilidad de acertar al primer intento el horóscopo de una persona. Hay un caso favorable y 12 casos posibles.

Sin embargo, a veces calcular el número de casos favorables y casos posibles es complejo y hay que aplicar reglas matemáticas:

Por ejemplo: 5 matrimonios se sientan aleatoriamente a cenar y queremos calcular la probabilidad de que al menos los miembros de un matrimonio se sienten junto. En este caso, determinar el número de casos favorables y de casos posibles es complejo.

Las reglas matemáticas que nos pueden ayudar son el cálculo de combinaciones, el cálculo de variaciones y el cálculo de permutaciones.

a) Combinaciones:

Determina el número de subgrupos de 1, 2, 3, etc. elementos que se pueden formar con los "n" elementos de una nuestra. Cada subgrupo se diferencia del resto en los elementos que lo componen, sin que influya el orden.

Por ejemplo, calcular las posibles combinaciones de 2 elementos que se pueden formar con los números 1, 2 y 3.

Se pueden establecer 3 parejas diferentes: (1,2), (1,3) y (2,3). En el cálculo de combinaciones las parejas (1,2) y (2,1) se consideran idénticas, por lo que sólo se cuentan una vez.

b) Variaciones:

Calcula el número de subgrupos de 1, 2, 3, etc.elementos que se pueden establecer con los "n" elementos de una muestra. Cada subgrupo se diferencia del resto en los elementos que lo componen o en el orden de dichos elementos (es lo que le diferencia de las combinaciones).

Por ejemplo, calcular las posibles variaciones de 2 elementos que se pueden establecer con los número 1, 2 y 3.

Ahora tendríamos 6 posibles parejas: (1,2), (1,3), (2,1), (2,3), (3,1) y (3,3). En este caso los subgrupos (1,2) y (2,1) se consideran distintos.

c) Permutaciones:

Cálcula las posibles agrupaciones que se pueden establecer con todos los elementos de un grupo, por lo tanto, lo que diferencia a cada subgrupo del resto es el orden de los elementos.

Por ejemplo, calcular las posibles formas en que se pueden ordenar los número 1, 2 y 3.

Hay 6 posibles agrupaciones: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) y (3, 2, 1)

.

LECCION 19ª
Combinaciones, Variaciones y Permutaciones (II)

¿Cómo se calculan?

a) Combinaciones:

Para calcular el número de combinaciones se aplica la siguiente fórmula:

El termino " n ! " se denomina "factorial de n" y es la multiplicación de todos los números que van desde "n" hasta 1.

Por ejemplo: 4 ! = 4 * 3 * 2 * 1 = 24

La expresión "Cm,n" representa las combinaciones de "m" elementos, formando subgrupos de "n" elementos.

Ejemplo: C10,4 son las combinaciones de 10 elementos agrupándolos en subgrupos de 4 elementos:

Es decir, podríamos formar 210 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

b) Variaciones:

Para calcular el número de variaciones se aplica la siguiente fórmula:

La expresión "Vm,n" representa las variaciones de "m" elementos, formando subgrupos de "n" elementos. En este caso, como vimos en la lección anterior, un subgrupo se diferenciará del resto, bien por los elementos que lo forman, o bien por el orden de dichos elementos.

Ejemplo: V10,4 son las variaciones de 10 elementos agrupándolos en subgrupos de 4 elementos:

Es decir, podríamos formar 5.040 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

c) Permutaciones:

Para calcular el número de permutaciones se aplica la siguiente fórmula:

La expresión "Pm" representa las permutaciones de "m" elementos, tomando todos los elementos. Los subgrupos se diferenciaran únicamente por el orden de los elementos.

Ejemplo: P10 son las permutaciones de 10 elementos:

Es decir, tendríamos 3.628.800 formas diferentes de agrupar 10 elementos

LECCION 20ª
Combinaciones, Variaciones y Permutaciones (III)

Vamos a analizar ahora que ocurriría con el cálculo de las combinaciones, de las variaciones o de las permutaciones en el supuesto de que al formar los subgrupos los elementos pudieran repetirse.

Por ejemplo: tenemos bolas de 6 colores diferentes y queremos formar subgrupos en los que pudiera darse el caso de que 2, 3, 4 o todas las bolas del subgrupo tuvieran el mismo color. En este caso no podríamos utilizar las fórmulas que vimos en la lección anterior.

a) Combinaciones con repetición:

Para calcular el número de combinaciones con repetición se aplica la siguiente fórmula:

Ejemplo: C'10,4 son las combinaciones de 10 elementos con repetición, agrupándolos en subgrupos de 4, en los que 2, 3 o los 4 elementos podrían estar repetidos:

Es decir, podríamos formar 715 subgrupos diferentes de 4 elementos.

b) Variaciones con repetición:

Para calcular el número de variaciones con repetición se aplica la siguiente fórmula:

Ejemplo: V'10,4 son las variaciones de 10 elementos con repetición, agrupándolos en subgrupos de 4 elementos:

Es decir, podríamos formar 10.000 subgrupos diferentes de 4 elementos.

c) Permutaciones con repetición:

Para calcular el número de permutaciones con repetición se aplica la siguiente fórmula:

Son permutaciones de "m" elementos, en los que uno de ellos se repite " x1 " veces, otro " x2 " veces y así ... hasta uno que se repite " xk " veces.

Ejemplo: Calcular las permutaciones de 10 elementos, en los que uno de ellos se repite en 2 ocasiones y otro se repite en 3 ocasiones:

Es decir, tendríamos 302,400 formas diferentes de agrupar estos 10 elementos.

LECCION 21ª
Ejercicios

1.- Ejercicio

Calcular la probabilidad de acertar los 14 signos de la quiniela:

Solución:

Se aplica la Regla de Laplace (casos favorables / casos posibles). El caso favorable es tan sólo uno (acertar los 14 signos). Los casos posibles se calculan como variaciones con repetición de 3 elementos (1, X y 2), tomados de 14 en 14 (los signos que hay que rellenar).

Son variaciones y no combinaciones ya que el orden influye: no es lo mismo (1,1,X) que (1, X, 1). Y son con repetición, ya que cualquiera de los signos (1, X y 2) se puede repetir hasta 14 veces.

Por lo tanto, los casos posibles son:

Y la probabilidad de acertar los 14 resultados es:

No demasiado elevada....pero el que la sigue la consigue.

2.- Ejercicio

Y la probabilidad de acertar 12 signos de la quiniela:

Solución:

Aplicamos nuevamente la Regla de Laplace. En este caso los casos favorables se calculan como combinaciones de 14 elementos tomados de 2 en 2, de esta manera obtenemos todas las posibles alternativas de fallar 2 resultados de 14 (lo que equivale a acertar 12 resultados). Utilizamos combinaciones y no variaciones ya que el orden no importa (da lo mismo fallar el 3º y el 6º, que el 6º y el 3º)

Los casos posibles siguen siendo los mismos:

Por lo que la probabilidad de acertar 12 resultados es:

Por lo tanto, tenemos más probabilidades de acertar 12 resultados que 14 (¿será por eso por lo que pagan menos?).

3.- Ejercicio

Calcular la probabilidad de, en una carrera de 12 caballos, acertar los 3 que quedan primeros (sin importar cual de ellos queda primero, cual segundo y cual tercero).

Solución:

Se aplica la Regla de Laplace. El caso favorable es tan sólo uno: los 3 caballos que entran en primer lugar. Los casos posibles se calculan como combinaciones de 12 elementos tomados de 3 en 3 (es decir, determinamos todos las posibles alternativas de 3 caballos que pueden entrar en las 3 primeras posiciones). Como el orden de estos 3 primeros caballos no importa, utilizamos combinaciones en lugar de variaciones.

Por lo tanto, los casos posibles son:

Por lo que la probabilidad de acertar los 3 caballos ganadores es:

Algo mayor que en las quinielas.... Eso sí, se paga menos.

4.- Ejercicio

Y si hubiera que acertar, no sólo los 3 caballos que ganan, sino el orden de su entrada en meta.

Solución:

El caso favorable sigue siendo uno: los 3 caballos que entran en primer lugar, colocados en su orden correspondiente.

Los casos posibles se calculan ahora como variaciones (ya que el orden influye) de 12 elementos tomados de 3 en 3 (calculamos todas las posibles maneras en que los 12 caballos podrían ocupar las 3 primeras posiciones.

Por lo que la probabilidad de acertar los 3 caballos ganadores es:

Menor que en el ejemplo 3º. Ya no vale acertar que 3 caballos entran en primer lugar, sino que tenemos que acertar el orden de su entrada.

No hay comentarios:

Publicar un comentario